
Garbage collection - Part 2: Collection

2009-03-27 / rev 1 / lhansen@adobe.com

This note covers garbage collection, weak references, and write barriers. The files covered are
GC.{h,cpp}, GCWeakRef.h, GCStack.h, and WriteBarrier.h. Requirements, introductory matters,
objects allocators, and reference counting are covered in Part 1. Various gripes are collected in Part 3.

Major findings

Mark stack management does not seem like it is a good fit to small-memory systems: failure to extend
the mark stack will cause an abort, and the mark stack is maintained as one large and therefore
fragmentation-inducing block.

The worst-case marker recursion depth -- 87KB -- is far too large for embedded systems.

Since GC::Collect is called by the player to drive the collector and does not have any way of using a
quantum of time provided to it, we risk visible pauses, especially on systems where the heap/CPU
ratio is high (as it will be on phones).

The code implementing the policy for triggering and running the garbage collector seems quite shaky,
and may not have seen a lot of testing (since the Player drives GC quite a bit and DRC takes pressure
off the GC). The fact that the various GCs are unaware of each other and largely independent of the
FixedMalloc heap also suggests that the collection policy is not a good fit for the smaller systems.

I believe the collector design has too many restrictions to be truly resilient to out-of-memory
conditions.

Incremental collection

All collection is incremental.

("Non-incremental" collection is supported but it is implemented simply as the incremental collector
run until collection is finished. The logic for triggering collections in non-incremental mode is a little
different but not very. Non-incremental mode is used for debugging only.)

Collection can be triggered and driven by client code, or it will be triggered and driven as a side effect
of allocation. Either way things progress pretty much the same way.

The collector proper has five main functions:

StartIncrementalMark finishes any outstanding lazy sweeping and pushes all the roots onto the
mark stack and calls IncrementalMark
IncrementalMark processes items on the mark stack until it's empty or until the time budget for
the increment is exhausted. If the mark stack is empty on entry to IncrementalMark then it calls
FinishIncrementalMark.
FinishIncrementalMark marks from all the roots again, then creates a work item for the entire
stack and marks that, and then calls Sweep
Sweep calls Finalize and then sweeps any entirely empty pages
Finalize calls the Finalize method on all the allocators owned by the GC; this causes each to
traverse its block list and run the finalizer of each unmarked finalizable object, and compute the



number of live items per block. Blocks without live objects are added to lists that are processed
by Sweep

Non-empty pages are not swept during collection, but on demand as more memory is needed, and
sometimes eagerly before a new collection starts.

Since marking and sweeping are interleaved with mutator work, the main latency in the collection
process comes in at the beginning, when StartIncrementalMark sweeps unswept pages, and at the end,
when FinishIncrementalMark scans the stack and examines every page in the system and runs the
finalizers for all objects that are going to be reclaimed (through GC::Finalize).

Marking, Finalization, and Sweeping

Conservative marking

MMgc uses conservative marking. Any pointer-size value, read from a location with pointer-size
alignment within a root or object in the garbage-collected heap, that can be interpreted as a pointer to
an object within the garbage-collected heap, causes the latter object to be marked.

Conservative marking tends to be more expensive than exact marking (due to a more complicated
test); to retain more objects than exact marking (due to false positives); and to prevent objects from
being moved (since the GC does not know whether a value is a true pointer it can't update any value) .
The latter two factors tend to drive up memory consumption relative to exact marking.

The memory consumption problem can be alleviated to some extent. MMgc segregates pointer-
containing and non-pointer-containing objects, and considers only pointers near the start of an object
as being a pointer to the object - not arbitrary pointers into the object. Both techniques are known to
help.

Issue: MMgc does not implement other techniques, like blacklisting.

Action: Research such techniques and find out if they apply to MMgc. (Blacklisting might not, on
non-VM systems, for example.)

Issue: It would be helpful to try to estimate whether conservative marking retains more memory in
practice than exact marking would, especially as false retention tends to be platform-dependent (it
depends on the location of objects in memory).

Action: It's not clear how that could be done without implementing exact marking.

Issue: In GC::MarkItem, the case for small objects handles doubly-inherited classes specially but the
case for large objects does not. I'm not sure I understand what's going on for small objects later,
presumably the C compiler has given us a pointer into an object following a cast to a base or derived
class. The code that's here is a hack and probably not portable. Presumably the code is missing for
large objects.

Action: Figure out what's supposed to be the case here.

Mark algorithm

Marking (the core of which is GC::MarkItem) proceeds as follows. First root objects are pushed onto
the mark stack. Then the marker loops: it pops an element off the stack, marks it, and scans it for
pointers, pushing each pointed-to object onto the mark stack. The algorithm terminates when the stack



is empty.

If the pointing object and the pointed-to object are on the same 4KB page then the marker calls itself
recursively instead of pushing the item onto the mark stack. No justification is given for that,
presumably it is meant as an optimization.

Issue: The largest number of items on a page is 506 eight-byte items. In principle, a Lisp-style linked
list of 506 GCObjects could all end up on the same page. Compiled by GCC on my Macintosh, the
stack frame for MarkItem is 172 bytes. So the worst-case recursion for MarkItem consumes 87KB of
stack - far beyond the 50KB stack size currently required to be shared by the VM, the player, the
player's host, and the GC. (I stress that this worst case is extremely unlikely to occur and will
therefore be encountered but rarely in web content.)

Action: This must be fixed. Two easy fixes would be not to go recursive at all, or to limit recursion to
some small number of items. It seems that the first order of business must be to determine whether the
recursive marking pays off significantly on real programs.

Mark stack

GCStack (see GCStack.h) is a simple mark stack used by the collector to track objects that have been
seen but not traversed.

The mark stack storage is allocated with new, which -- because of operator overloading -- allocates it
on the FixedMalloc heap. (There's a NULL check following the allocation; it is redundant but also
ineffective, because it would not prevent an almost immediate crash in GCStack::Push when
GCStack::Alloc returns.)

Issue: Because FixedAlloc may abort the process if memory cannot be found, mark stack allocation
may cause an abort. This is unacceptable, as the GC must be able to run to completion in low-memory
conditions.

Action: The incremental marking mechanism must in some way be able to handle a failed memory
allocation. There are known algorithms for this; they trade speed for space. Segmenting the stack may
be helpful too, as an initial segment will be all that's needed for such a fallback algorithm.

The stack size does not appear to be bounded. It starts out at 512 items, and forcing it to grow to 1024
and then 2048 was not very hard. 2048 elements represents 16KB, since the element type is
GCWorkItem and that type is 8 bytes on a 32-bit platform.

Issue: The mark stack is one block of memory; if it grows much the large blocks will tend to induce
fragmentation, so the fuller the heap the less likely that we will complete.

Action: At least allocate the mark stack in segments.

Issue: The mark stack does not shrink, so if it needs to be large during a particular GC cycle all the
memory will be retained until the process shuts down.

Action: Allocating the mark stack in segments will make it easier to free unused parts.

Sweeping

The process of scanning a block or the heap looking for reclaimable objects, finalizing them, and
recycling the memory is known as sweeping.



The sweeper is run in three places.

During StartIncrementalMark, any pages not yet swept are swept. This sweep collects free
objects on a page into the page's free list.
When a new block is needed for one of the allocators, it is taken off the list of blocks with free
objects, and swept if necessary; this sweep also collects free objects on a page into the page's
free list.
During FinishIncrementalMark, the heap is swept from one end to the other. This sweep is
different: it runs Finalize (see the next section), then frees any completely empty blocks.
Non-empty blocks are added to free lists. But no sweeping of individual blocks takes place.

The sweeper incorporates an optimization to avoid work for blocks that haven't changed since the last
GC.

The general idea about running the sweeper lazily is to reduce the latency at the end of a garbage
collection.

Issue: Since finalization touches every page anyway, do we really gain much by sweeping lazily?

Action: As always, we need data. This particular item is probably low priority.

Finalization

Finalization runs the finalizers of all dead, finalizable objects. To do this, it examines the bit vector of
every heap object to find dead objects, so it touches every block in the heap (even if only to retrieve
the address of the bit vector). Blocks are reached in more or less arbitrary order.

Issue: Finalization may be very slow and may result in visible pauses. The finalization phase may
have dubious locality, each finalizer can take arbitrarily long to run, there can be lots of finalizers
(every reference counted object is finalized), and every finalizable dead object is finalized at the end
of the collection. Slow computers with small caches and slow memories trying to perform "web
browsing" tasks may be particularly vulnerable.

On the other hand, we don't know whether many of the RC objects aren't simply taken care of by ZCT
reaping (after all, that's the hypothesis for DRC), so whether this is a bottleneck in practice remains to
be seen.

Action: "Follow up on this" is vague but that's what we need to do. Do we have any data on latencies
in typical applications? Should I be worried that the new flying-cubes Flash animation on adobe.com
has a consistent stutter as the "H" glides into place?

The finalization pass collects those blocks that are entirely empty so that they can be freed
immediately by the sweeper.

Collection triggering

Triggering of garbage collection can be explicit (through calls to a GC API function) or implicit (as a
consequence of allocation).

The Player is quite active in controlling garbage collection, and this probably affects (a) any policy
parameters the GC itself has for running the collection and (b) the reliability of the GC triggering
code in MMgc, because it's probably not been tested extensively.



In addition to triggering collections, the Player also triggers ZCT reaping by calling GC::ReapZCT; as
explained elsewhere this is a "minor garbage collection".

Issue: The code that performs collection decisions is duplicated throughout the collector, and with
various variations (sometimes a number is divided by the free space divisor and compared to a third;
other times the third is multiplied by the free space divisor and compared to the first), and the effect is
to cause confusion. (Since I'm on my soap box, collectThreshold is a poor name for the minimum
heap size, since "threshold" could be an upper or lower limit.)

Action: Clean this up.

Explicit collection requests

The two APIs for triggering a collection are GC::Collect and GC::MaybeGC.

GC::Collect starts a full mark-sweep collection provided the final phase of a collection (reaping or
sweeping) is not currently underway. Also, this function will drive an incremental collection that is
underway to its conclusion.

GC::MaybeGC either starts a new incremental collection or pushes incremental marking along a little
bit (which may also trigger the end of the collection).

Issue: Neither the VM nor the Player uses GC::MaybeGC, and there's no selftest for it. We must
assume it's not been tested at all.

Action: Test it or remove it.

Issue: Since the player calls GC::Collect from time to time there's reason to be nervous about long
pauses in programs with large heaps and/or on small devices.

Action: A better API would seem to be one that takes an argument that indicates the time available,
and which may start a new collection and then push an existing collection along for that time.

GC::MaybeGC will only start a new collection if "enough" time has passed since the previous
collection ended, and the memory consumption makes it appear that it's worthwhile.

Issue: The definition of "enough" time is in terms of "ticks", the units of which are machine
dependent. The definition looks broken because it is constant and not parameterized by the machine.
It is this (the comment is from the code):

kMarkSweepBurstTicks = 1515909; /* 200 ms on a 2ghz machine */

On a machine with a 1KHz tick frequency this is 1515 seconds, or 25 minutes. If the frequency is
1Mhz, 1.5 seconds. Machine speed does not seem to have anything to do with it.

This constant is also used for triggering automatic collections.

Action: Fix it.

Automatic collection

Automatic collection is driven by block allocation requests: as long as allocation stays within the
existing allocated blocks and free lists, no new collection will be started automatically.



Issue: Though correct in principle, that policy is probably not ideal for small systems because it will
tend to keep blocks alive longer; those blocks can then not be repurposed, eg for FixedMalloc.

Action: Investigate whether triggering off eg object allocation volume leads to lower block retention
rates. (Object allocation indicates mutator activity, and with mutator activity objects tend to die.)

At the time of block allocation, provided that the entire heap (not just the gc'd heap) is large enough
(1MB) and has been expanded since the last collection and enough time has passed since the last
incremental collection completed, then a new collection is started.

Issue: That logic is a bit puzzling. It would seem to keep the incremental collector chugging along
steadily, independent of actual expansion volume. (Just a single block expansion will trigger GC.)

But a collection can also be started if the gc'd heap is large enough (1MB as well) and "enough" block
allocations have taken place since the last collection, where "enough" is defined as the number of GC
pages divided by the free space divisor (hardwired at 4).

Issue: The intent of the free space divisor is not documented, as with too much else about MMgc.
Given that block allocation updates both allocsSinceCollect and totalGCPages by the same amount
when a block is allocated or freed, the test is that a>(t+a)/4, or a>t/3. I have no idea whether that was
the intent, but I'm inclined to think not.

Action: The policy must be documented better and corrected if necessary. If we have tuning knobs,
they must be predictable.

The manually managed heap (FixedMalloc et al) and the automatically managed heap (GC objects
and RC objects) are only loosely coupled: the GC is aware of the "total heap size", which includes
memory allocated to FixedMalloc, and uses lack of movement in the total heap size as a throttle on
garbage collection, but that seems about it.

Issue: Yet pressure on FixedMalloc can sometimes be alleviated by running the garbage collector
more often. This does not seem to happen at all, except accidentally - FixedMalloc does not seem to
be aware of the GC.

Action: Investigate whether it's reasonable to make heap expansions in FixedMalloc trigger or drive
collections in the GC'd heap(s).

There can be multiple garbage collectors, but they seem to be unaware of each other.

Issue: Yet pressure on one GC can sometimes be alleviated by running the other collectors more
often. Again, this does not seem to happen at all except accidentally, by activity in a mostly idle heap
being triggered by allocation in that heap, noticing that the heap has grown overall.

Action: Investigate whether it's reasonable to make heap expansions in one GC trigger or drive
collections in the other GCs.

Collection progress

Once an incremental collection is in progress it is driven by block allocations: any block allocation
will run the incremental marker, provided "enough" time has passed since the previous incremental
mark.

The notion of "enough" time is given by the constant kIncrementalMarkDelayTicks; it is a number of



ticks corresponding to 10ms:

kIncrementalMarkDelayTicks = int(10 * GC::GetPerformanceFrequency() / 1000);

Issue: There should be other drivers for collection as well, as outlined in the previous section: overall
heap pressure should drive collection.

Action: Fix this.

Write barrier

Notionally a write barrier is a daemon that intercepts updates to the object graph and tracks them in
some manner.

The write barrier is required for the incremental marking collector. During marking, an object's
references are marked recursively, and once marked an object will not be revisited. However, if an
assignment subsequently stores a pointer to an unmarked object into the marked object then the
unmarked object will not be marked. The barrier records the store so that the marking can take place.

In MMgc a write barrier is implemented as a fat pointer with semantics attached to creation,
assignment, and destruction. The write barrier is embedded in a GCObject/GCFinalizedObject (or any
of its subclasses, including RCObject) and represents the reference from the embedding object to the
referent.

There are two write barriers, one specialized to RCObject referents (WriteBarrierRC) and the other
for non-RCObject objects (WriteBarrier). Tommy tells me that the split is a performance win; a
general write barrier that figures out the type of object at run-time was too expensive. The issue is that
WriteBarrierRC must do two things: it makes sure that the GC observes liveness, but it also keeps
reference counts up to date.

Issue: The split is an unfortunate aspect with the current barrier structure, because it means that
knowledge of the type of object is embedded in client code, which in turn makes changes in
representation much harder. Notably, ScriptObject is derived from RCObject so every reference in the
system is wrapped in a a WriteBarrierRC. We cannot experimentally change ScriptObject to be
derived from GCFinalizedObject, which otherwise has the same semantics as RCObject without
rewriting a lot of code (yet we'd like to do so because we want to find out if RCObject is a good or
bad choice for ScriptObject).

Action: It's possible we can fix this -- for the purposes of an experiment -- by introducing a "joint"
write barrier type and defining both DWBRC and DWB as this type, don't know yet.

The write barrier is fairly expensive. I've not included all the evidence here but looking at
WriteBarrierRC, and making reasonable assumptions about function in-lining, a barrier costs at a
minimum three function calls, a dozen ALU instructions, and several conditional branches before it is
even determined whether it is necessary to record the store.

Issue: A lot of unnecessary work is performed for each store, only writes during incremental marking
need incur that work.

Action: Consider testing whether the incremental marking is ongoing in-line, before doing all that
work, then try to optimize the barrier by merging more of this functionality into a single function
perhaps.



A conversation with Tommy about this reveals that so far, barriers have not shown up in profiles as
"hot", and he speculates that that may be because there are so many other inefficiencies in the VM.
Nevertheless it seems to me that we might look into reducing the cost in general, eg by building
pathological test cases.

Weak references

GCWeakRef (see GCWeakRef.h) is a fat pointer that holds a pointer to a GCObject; the contained
pointer is invisible to normal tracing, so if the only path to an object is via a GCWeakRef then the
object will be a candidate for reclamation. The utility of the GCWeakRef is that a pointer to the
GCWeakRef can be placed in a data structure, thus the weakly held object remains in the data
structure as long as it is also held by some other reference, but once all other references are gone the
reference from the data structure is dropped by the garbage collector.

A weakly held object is marked as weakly held (the kWeakRef bit is set for the object in the object's
owning block's bit vector).

The garbage collector maintains a table of GCWeakRef instances, this table maintains a one-to-one
mapping between the GCWeakRef and the object it holds. That mapping is needed when a weakly
held object is reaped: at that point, the object pointer in the GCWeakRef must be set to NULL.

The hash table grows to maintain at most a 0.75 load factor. It grows by a factor of two when it does
grow, and uses two words per entry. For a string of n insertions it will occupy at least 2*n*1.3 words
plus some metadata. For 100 insertions, for example, it will occupy at least 260 words or about 1KB,
on a 32-bit system.

Issue: The hash table for weakly held objects can become a large indigestible blob if there are many
weakly held objects. And indeed, for mobile we are discussing adding a user-facing phantom pointer
mechanisms, and that may increase pressure on the hash tables.

Action: At least try to get a grip on what the hash table size is at present (for typical Flex apps) and
what it might be in the future - do we have hundreds of items or thousands? Also investigate
alternative, less blobbish data structures. GC::GetWeakRef and GC::ClearWeakRef are probably not
very performance critical, so something like a B-tree might work well in practice.

Issue: I believe there are no test cases for weak references.

Action: Implement such test cases. They must test that weakly held objects are indeed removed by
GC.

OOM Handling and Collector Limitations

My concern here is whether the collector architecture prevents efficient out-of-memory recovery. This
section is preliminary.

Recall that out-of-memory recovery must have several components:

A callback to user code to allow user code to clear out caches, compress data structures, and so
on
A "phantom reference" mechanism to automate clearing of caches where suitable
The ability to run a garbage collection following the callback to user code
A reserve memory that's available for allocation during cleanup callback execution



I won't hold it against MMgc that there's no phantom reference mechanism at this time, nor a working
reserve. However, we can imagine what such mechanisms might look like and question whether they
will be usable.

Issue: User code cannot reliably allocate GC'd memory in a callback. GC'd memory may not be
allocated from a finalizer. Yet for a phantom pointer mechanism the ability to record useful data about
an object that's being cleared out may be necessary.

Issue: User code cannot reliably free GC'd memory explicitly. For example, Free() calls during sweep
(from a callback, or from a finalizer) will be ignored.

Issue: A garbage collection cannot be triggered during a ZCT reap, yet a finalizer may need to
allocate memory. Currently it can't, but as I wrote above that needs to be fixed probably, at which
point this will become an issue.

Issue: As previously noted, the mark stack may need to grow during GC, which may be difficult or
impossible if the system is in an out-of-memory situation. If "impossible" occurs, then the system will
halt.

Efficiency

This section is preliminary.

As a general note, some of the algorithms are fairly branchy, because of optimizations and general
complexity (eg, conservative marking has a complex predicate for pointer detection).

In general there is some inlining where I wouldn't expect it and lack of same where I would have
expected it, but it's hard to be very critical without data.

At this time I have no major misgivings about the efficiency of the code. That said, the code is written
to be fast, and making it more memory-efficient may impact performance on the micro-level as well
as on the macro-level.


